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A B S T R A C T

With the advent of DNA forensics, research on seafood fraud has increased drastically. The documentation of
mislabeling has raised concern over the identity, value, and safety of seafood. However, the general char-
acterization of mislabeling is limited. We conduct a Bayesian meta-analysis to estimate global mislabeling rates
and their uncertainty across several factors. While the effort to document mislabeling is impressive, it is highly
skewed toward certain taxa and geographies. For most products, including all invertebrates, there is insufficient
data to produce useful estimates. For others, the uncertainty of estimates has been underappreciated. Mislabeling
is commonly characterized by study-level means. Doing so often overestimates mislabeling, masks important
product information, and is of limited utility—particularly given that studies often lack adequate sampling
designs for parameter estimation. At the global level, overall mislabeling rates do not differ statistically across
supply chain locations, product forms, or countries. Product-level estimates are the most informative. The
majority of products, for which there is sufficient data, have mislabeling estimates lower than commonly re-
ported. The most credible average mislabeling rate at the product-level is 8% (95% HDI: 4–14%). Importantly,
some products have high estimates, which should be priorities for research and interventions. Estimates must be
combined with other data in order to understand the extent and potential consequences of mislabeling, which is
likely to vary drastically by product. Our meta-analysis, which can be updated with new data, provides a
foundation for prioritizing research to inform programs and policies to reduce seafood fraud.

1. Introduction

Media outlets, governments, academics, and NGOs are increasingly
documenting seafood fraud. This attention has raised public concern
over the identity, value, and safety of seafood. While seafood fraud
comes in a variety of forms, mislabeling is perhaps the most concerning
(Reilly, 2018).2 Misrepresenting one species, provenance, or production
system as another has many potential consequences: human health
risks, economic losses, natural systems impacts, and the undermining of
sustainability efforts. For example, consumers may be unknowingly
dining on endangered species or seafood that can pose health risks
(Cohen et al., 2009; Ling et al., 2008; Palmeira et al., 2013). A seafood
product that appears readily available in the marketplace through
mislabeling can create a distorted public impression that there is a
plentiful supply in the sea. By contrast, an accurate representation of
the endangered status of a fishery can sometimes reduce consumer
demand (Brownstein et al., 2003). Seafood mislabeling is also suspected

of being an important enabler of illegal, unreported, and unregulated
(IUU) fisheries (Gordoa et al., 2017; Helyar et al., 2014; Wu, 2017;
Xiong et al., 2016). Yet, the extent of potential biological, economic,
and health impacts from seafood mislabeling is unknown, with evi-
dence largely limited to anecdotal cases (Kroetz et al., 2018).

With the advent of food forensics (e.g., DNA barcoding), research on
seafood fraud has grown over the past decade: 51 papers were pub-
lished on the topic in 2015 compared to four in 2005 (Fig. 1). Once
dominated by environmental and media organization investigations
(Boston Globe, 2011; Grogran, 1988; Warner et al., 2016), peer-re-
viewed studies have increased substantially in recent years (Pardo
et al., 2016). The majority of research has focused on developing for-
ensic tools and documenting mislabeling ad hoc for a particular product
or geography. Consequently, our current understanding of seafood
fraud is largely limited to a growing collection of idiosyncratic studies.
The general characterization of seafood fraud is limited, and even less is
known about its causes and consequences.
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Due to the globalized nature and complexity of seafood markets
(Anderson et al., 2018; Gephart and Pace, 2015), understanding sea-
food fraud is a wicked problem. Mislabeled or not, seafood products
often do not comply with labeling regulations, which are often con-
fusing (Barendse and Francis, 2015; Cawthorn and Hoffman, 2017a;
Meloni et al., 2015; Towers, 2013). Diverse national policies on seafood
labeling and traceability, along with weak enforcement, complicate
efforts to characterize mislabeling (D'Amico et al., 2016; Hofherr et al.,
2016; Meloni et al., 2015). For example, under current US policy, over
60 species can be legally labeled rockfish or grouper (FDA, 2018). Yet,
even where seafood traceability regulations are progressive (e.g., Eur-
opean Union), mislabeling continues to be documented (Bréchon et al.,
2016; Charlebois et al., 2014; Christiansen et al., 2018; Gordoa et al.,
2017; Harris et al., 2016; Tantillo et al., 2015).

An accurate characterization of seafood mislabeling is a critical first
step to investigating the causes and consequences of seafood fraud, as
well as designing solutions to reduce it. This is particularly important as
current national policies are being revised and new ones implemented
(Charlebois et al., 2014; D'Amico et al., 2016; Hofherr et al., 2016). In
the United States, for example, a new seafood import monitoring pro-
gram was implemented in 2018 focused on reducing seafood fraud and
IUU fishing (Department of Commerce, 2018). It is being rolled out in
stages, with the first stage covering 16 groups of seafood products that
were deemed priorities (Department of Commerce, 2016). Yet, for these
products and others, little is known about mislabeling rates and the
uncertainty of those rates.

Building upon several reviews (Golden and Warner, 2014; Naaum
et al., 2016; Pardo et al., 2016), we conduct a meta-analysis on seafood
mislabeling. We produce, for the first time, global mislabeling rate es-
timates and their associated uncertainty. We do so by compiling a
global database and using a Bayesian approach to develop statistical
models to estimate mislabeling across a suite of factors. In this paper,
we present four main results from our meta-analysis. First, we synthe-
size efforts to document mislabeling and discuss the challenges of
characterizing seafood mislabeling. Second, we produce global esti-
mates of study-level mislabeling rates and their uncertainty. While
mislabeling rates at the study-level are most commonly reported, we
argue that they have limited utility for characterizing seafood fraud.
Third, we produce mislabeling estimates across supply chain location
(e.g., restaurant vs. port), product form (e.g., processed vs. filet), and
country. Fourth, we estimate rates for specific seafood products, which
we argue is the most informative for characterizing fraud. Last, we
discuss our results in the broader context of seafood fraud and make
recommendations on research that will inform the design of programs

and policies to reduce it.

2. Methods and materials

2.1. Data collection

We conducted a literature review using the Web of Science to
compile all published literature up to December 2017. Searching title,
abstract, and keywords, we constrained our search with keywords re-
lated to seafood (i.e., seafood OR fish OR crab OR sushi OR shrimp OR
caviar OR salmon OR trout) and fraud (i.e., mislabel* OR fraud OR
misdescription). We then screened those publications to confirm a focus
on seafood fraud, which excluded 37 papers. We also checked cited
references within identified papers for any additional relevant papers
not captured in the literature search. A total of 331 publications were
identified related to seafood fraud (Fig. 1). We also conducted a review
of reports and articles on mislabeling that did not undergo a formal
peer-review process. Studies were identified via internet searches (i.e.,
Google) using the same keywords. This included publications by gov-
ernment agencies, media outlets, and NGOs. A total of 69 additional
publications were identified related to seafood mislabeling.

We screened each publication for usable data on seafood mis-
labeling. Using a seafood sample tested for mislabeling with a forensic
method as the replicate, we compiled and coded the following in-
formation when possible: 1) study, 2) content of the label, 3) genus
reported, 4) species reported, 5) the product form (e.g., filet), 6) the
location in the supply chain (e.g., restaurant), 7) country where the
sample was collected, 8) year collected, and 9) the true identity (e.g.,
genus and species) of the sample (see Table SM1 for details). We used
Fishbase and Sealifebase as taxonomic authorities and adopted common
names from these sources (i.e., for species and families; Froese and
Pauly, 2018; Palomares and Pauly, 2018).

The resulting database was organized into multiple levels, de-
pending on the level of taxonomic resolution. We include the taxonomic
level of family, which was derived either by genus-level information or
inferred, when possible, from the common name declared (e.g., Pacific
Cod can be assigned to the family Gadidae, while crab cannot be as-
signed to a family since it includes over 90 possible families). Since
many seafood samples include labels with common names only, we
derived a level of analysis at the resolution of seafood product, which
includes all samples where the genus or species were reported and
samples where the species can be confidently inferred by the common
name reported (e.g., sample labeled swordfish are grouped with samples
that reported Xiphias gladius to create a level of analysis based on the
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Fig. 1. Number of peer-reviewed publications involving seafood fraud over the past four decades. See Methods and Materials for details on data collection.
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common name of swordfish). This level increases the number of sam-
ples and studies, while also allowing us to estimate mislabeling rates for
groups of species based on the reported label. This includes commonly
consumed seafood products that are often ambiguously labeled, such as
Pacific salmon, tuna, cod, and snapper. Pacific salmon, for example, en-
compasses several species belonging to the genus Oncorynchus and cod
includes several species of fish belonging to the family Gadidae. These
products were deemed mislabeled if their true identity is determined
otherwise. In this paper, our characterization of mislabeling relies on
analyses at the product and family levels. A product-level analysis
aligns better with how seafood is currently traded and purchased
globally.

Results of forensic testing were also organized into multiple levels,
depending on the taxonomic resolution. In most cases, results were
reported at the level of species, thus all four levels of analysis were
recorded. However in some cases, results are reported only at the re-
solution of genus or family. And, in other cases, sources reported only
common names or only reported that the sample was mislabeled with
no information on the identification of the substitute species.
Mislabeling necessarily involves two products: we refer to them as the
expected product (e.g., the species that the product is purported to be
based on a label) and the substitute—the true identity of a mislabeled
product.

2.2. Data filters

We excluded certain data from our analyses to remove potential
biases. First, we excluded any studies that reported data such that 1) a
seafood product could not be identified to at least one level of analysis,
2) sample sizes of products tested could not be determined or 3) only
mislabeled samples of a certain product were reported and information
on correctly labeled samples were omitted. In some cases, a study is
included in study-level estimates, but excluded in product-level esti-
mates because total sample sizes were not reported for a specific ex-
pected product (e.g., Warner et al., 2012). Second, we excluded samples
that were considered mislabeled because of a strict interpretation of the
expected common name versus the common name reported on the
label. For example, if a sample was labeled salmon or crab and it was
considered mislabeled in a study despite being identified at Salmo salar
(Atlantic Salmon) and Portunus sanguinolentus (Threespot swimming
crab), we excluded it from our analysis. While such cases can often be
considered mislabeled from a policy perspective, the focus of our meta-
analysis is on one seafood product being physically substituted for an-
other (i.e., species substitution). Third, we excluded any studies when
the primary data was no longer available (e.g., certain investigative
journalism efforts). Last, we excluded any samples, despite its de-
termination of being mislabeled or not, if the source stated that the
substitute was unable to be identified to any level of taxonomy (e.g.,
DNA did not amplify). These data filters allowed us to collate only
studies that could contribute to the statistical estimation of mislabeling
rates.

2.3. Meta-analysis

The basic premise of a meta-analysis is that the average of estimates
provided by a group of studies is closer to the truth than the estimate
provided by an individual study. While common in the medicine for
decades, meta-analysis is increasingly being used in conservation sci-
ence (Benayas et al., 2009; Koricheva et al., 2013). Meta-analysis often
assumes that each study is a near replication of the same experiment
and that observed differences in the results are solely due to chance
(i.e., fixed-effects model). Like many clinical medical trials (Cornell
et al., 2014), this is not the case with mislabeling studies: seafood is
sampled in different ways, with different products, for different reasons,
and in different locations. Thus, a random-effects model is more ap-
propriate for characterizing seafood mislabeling, which assumes that

study results are a combination of an effect common to all studies plus a
component specific to that study alone (Cornell et al., 2014;
Raudenbush, 2009).

A Bayesian meta-analytic approach offers a number of advantages to
characterizing seafood mislabeling, including delivering easily inter-
pretable results with fewer assumptions (Kruschke and Liddell, 2018).
First, meta-analyses are a type of hierarchical model, for which Baye-
sian methods are particularly useful. The structure of data across mul-
tiple studies can be described by a hierarchical model: that is, each
study has individual parameters and a higher-level distribution de-
scribes the variation of those parameters across studies. The top-level
distribution describes the central tendency of the trend across studies,
and the uncertainty of that trend. Because of the hierarchical nature,
estimates of each individual study are informed by the other studies,
resulting in overarching estimates as well as improved estimates of the
individual studies (Kruschke, 2014; Kruschke and Vanpaemel, 2015).
Second, Bayesian inference provides the exact desired information on
mislabeling: the probability distribution of all possible parameter va-
lues given the actual data. Third, a Bayesian approach can allow for
different variances within levels and model an exact binomial dis-
tribution, avoiding the shortcomings of a normal approximation with
binary data, especially when zero counts are common (Cornell et al.,
2014; Kruschke, 2014; Schmid and Mengersen, 2013). Fourth, Bayesian
inferences are more informative with respective to parameter estima-
tion because the posterior distribution reveals joint probabilities of
combinations of parameter values, and therefore, there is no reliance on
sampling distributions and p-values to interpret parameter estimates
(Kruschke and Liddell, 2018). In sum, a Bayesian approach allows
precision of estimation to be a main research goal more coherently than
a frequentist approach.

A meta-analysis requires a set of effect size estimates with their
corresponding variance. Our effect size estimates are for an individual
group with a dichotomous outcome (i.e., there is no control group): the
proportion of seafood samples mislabeled, along with the total number
of samples tested in a study. The goal of the meta-analysis is to estimate
the average true effect and the amount of heterogeneity among the true
effect. Bayesian hierarchal models do so by estimating parameters ea-
sily interpreted from the posterior distribution, in particular the para-
meter mode and credibility intervals (i.e., 95% highest density interval,
HDI). We present the mode as an estimate for the central tendency, as
opposed to the mean, because it is the value of the parameter that is
most credible (i.e., likely) given the data, and thus is arguably more
appropriate and informative in characterizing mislabeling data, which
can often have skewed distributions. However, the mode can sometimes
be unstable when using a MCMC sample (Kruschke, 2014). Thus, we
also report the posterior median and mean from our models. The 95%
HDI is the interval that includes 95% of all values in the posterior
distribution, and thus is a measure of precision or uncertainty.

First, we model mislabeling estimates at the level of the study. Study-
level mean mislabeling rates are what is typically reported in the literature.
We do so with a robust logistic regression model with one level of hierarchy
(Fig. SM1; Kruschke, 2014). The likelihood function is

y ~Bin( , N )i i i i (1)

where, yi represents the number of mislabeled samples by study i, out of Ni

(total # samples in study i). The datum, yi, is assumed to be a random draw
from a binomial distribution with mean ⍬i. The estimated mislabeling rate
of study i is denoted ⍬i, which can only take values between 0 and 1. There
are as many ⍬i as number of studies. We perform a logistic transformation of
the parameters ⍬i [αi = logit(⍬i)] for which we use a t distribution as a
conjugate prior of the likelihood function, which is defined as

µ µ, , ~t( , , ).i (2)৵ ৵

The estimated αi are t-distributed random values around the central
tendency μ. A t distribution is similar to a normal distribution with two
parameters that control its mean μ and width σ. But, it also has a third
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parameter that controls the heaviness of its tails: the normality para-
meter (৵), which describes the deviation from normality when there are
outliers (i.e., data values that fall unusually far from a model's expected
value). Thus, the t distribution is robust against outliers. For the three
hyperparameters (μ, σ, and ৵), we use non-informative priors because
little is known about the parameter values and we were interested in
what the data themselves provide as inferences. The model, its para-
meters, and priors are explained in detail in the Supplementary mate-
rials.

We compare our model results with the study-level arithmetic
mean, which ignores study effort (i.e., sample size; hereafter, referred
to as the naive mean3). We do so by establishing a region of practical
equivalence (ROPE) around the naive mean, which we set as ± 1%.
Analogous to equivalence testing, ROPEs are a decision tool for some
null value (Kruschke and Liddell, 2018). For example, when the 95%
HDI falls outside the ROPE, it can be concluded that 95% of the most
credible values of the parameter are not practically equivalent to the
null value.

Second, we developed a series of two-level hierarchal models in
order to estimate mislabeling rates for seven factors: study type, sea-
food type, supply chain location, product form, country, taxonomic
family, and seafood product. Each two-level hierarchal model is similar
to the study-level model, but each level of a factor is a different cate-
gory c in the models (e.g., the factor seafood type has two categories of
fish and invertebrate; see Fig. SM2). We estimate the mean (μc), scale
(σc), and normality(৵c) for each category within each factor separately.
The likelihood function is,

y ~Bin( , N )i c, i,c i,c i,c (3)

where, yi,c represents the number of mislabeled samples by study i out
of Ni within each category c. The datum, yi,c, is assumed to be a random
draw from a binomial distribution with mean ⍬i,c. There are as many ⍬i,c

as number of studies within each category c. We also perform a logistic
transformation of the parameters ⍬i,c for which we use a t distribution
as a conjugate prior of the likelihood function. In these models, there
are five types of hyperparameters: 1) estimated mislabeling rates for
each category of a factor (μc), the precision of those rates (σc), the
normality parameter (৵c), and estimated overall mislabeling rate (μ0),
and precision (σ0) of μ0. Like the study-level model, we use non-in-
formative priors. The models, its parameters, and priors are explained
in detail in the Supplementary materials.

Third, for the two-level hierarchical models, we explore potential
differences in mislabeling estimates between different categories for
each factor. The visual examination of the distributions of two para-
meters does not necessarily reveal whether the parameter values are
different because the joint distribution of the two parameters might
have positive or negative correlation that may mask any true difference
(Kruschke, 2014). Rather, it is the difference between two posterior
distributions that provides evidence for any difference. If the difference
of two distributions includes zero, and in particular when zero is in-
cluded in the 95% HDI, then there is no evidence to suggest the para-
meters differ. Only when a difference of zero falls outside the 95% HDI
would one conclude that there is a difference between two parameters
(e.g., one mislabeling estimate is greater than another). We use this
comparison to test for differences between supply chain location, pro-
duct form, and countries with respect to mislabeling rates. See Sup-
plementary materials for more detail.

2.4. Model performance and diagnostics

For all of our models, we include as much data and factors as

possible while still producing well-performing models. In many cases,
data is excluded due to the lack of replication. We use multiple visual
and numerical diagnostics to assess model performance, in particular to
check whether MCMC samples from the posterior distribution of each
model are representative of the true posterior distribution and whether
the estimates are accurate and stable. Diagnostics include trace plots,
density plots, Gelman-Rubin statistics, autocorrelation plots, effective
sample sizes (ESS), and Monte Carlo standard errors (MCSE). We also
explored any potential impact on our model results from our non-in-
formative priors by re-running the models with mildly-informative
priors (Gelman et al., 2008; Kruschke, 2014). Diagnostics are described
and reported in detail in Supplementary materials along with the use of
alternative priors. All analysis were conducted in the statistical lan-
guage R and JAGs (Plummer, 2017; R Development Core Team, 2017).

3. Results

3.1. Efforts to document mislabeling

Seafood mislabeling has been evaluated in 38 countries; however,
two-thirds (22) of those countries include two or less studies (Fig. 2).
The United States, Italy, and Spain are the countries with the largest
effort. Our review resulted in 141 studies with usable data for our meta-
analysis: 117 from peer-reviewed sources and 24 from sources that
were not peer reviewed (Table SM2). Most (94%) studies used DNA
methodologies as the forensic tool. Other methods included isoelectric
focusing (n = 2), immunological essays (n = 1), staple isotopes and
fatty acids (n = 1), morphometrics and DNA (n = 1), testing for syn-
thetic coloring (n = 1), and a combination of these methods (n = 1).
While our analysis included total of 27,313 samples, study sample size
is highly variable (range: 8–4656; mean = 194; median = 68;
mode = 90). We documented 401 seafood products that have been
tested for mislabeling, of which 222 (55%) where mislabeled at least
once. This includes 138 families, 209 genera, and 301 species.

Sampling effort is highly skewed toward certain taxa. Fifty-five
(42%) of the 138 families that have been tested for mislabeling consist
of a single study (Fig. 3). Gadidae (cods and haddocks), Scombridae
(mackerels, tunas, bonitos), and Salmonidae (salmonids) have been
included the most in mislabeling studies (n > 40), while Gadidae,
Acipenseridae (sturgeons and paddlefishes), and Rajidae (skates) have
the most number of samples pooled across studies (Fig. 3). Effort is also
heavily skewed from the perspective of seafood product (Fig. SM5). For
example, 57% of all products have been tested by a single study, and
50% have ≤5 total samples. When effort is broken down by seafood
product per study, average sample size is small (range: 1–2,609;
mean = 19, median = 3, mode = 1). Mislabeling studies tend to
sample less than a dozen different seafood products (mean = 10,
median = 5, mode = 1; standard deviation = 13).

We documented 358 species that have been identified as substitute
species in mislabeling studies (Fig. SM5). The majority (69%) were
identified from a single study, while almost half (46%) have been
identified a total of two times or less (i.e., total number of samples).
Striped Catfish (Pangasianodon hypophthalmus) was identified by the
most number of studies (n = 26), followed by Alaska Pollock (Gadus
chalcogrammus, 19), Bigeye Tuna (Thunnus obesus, 14), Atlantic Cod
(Gadus morhua, 13), Haddock (Melanogrammus aeglefinus, 13), and
Atlantic Salmon (Salmo salar, 13; Fig. SM6).

3.2. Study-level mislabeling estimates

Our model predicted a posterior mode mislabeling rate of 24% with
a 95% HDI spanning from 20% to 29% (Fig. 4a). The posterior mean
and median were the same as the mode. The model performed well,
with large ESSs, small MCMEs, and convergence for estimates of the
mean and variance (Table SM4). The probability that the naive mean of
the 141 study rates (30%) and the established ROPE (29–31%) is a

3 This term is borrowed from the forecasting field, where the naive model is
often the simplest and most cost-effective model that is compared to others
using different methodologies.
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credible value is 1.2% (Fig. 4). Predicted study-level mislabeling rates
were highly variable across studies, ranging from < 1–90%. They are
also uncertain, with an average 95% HDI of 19% (Fig. 4a, Table SM2).
The predicted posterior distributions for studies that underwent peer-
review or not were similar (Fig. 5). Both posterior mode estimates were
lower than their respective naive means. There are roughly five times as
many peer-reviewed studies compared to reports that did not undergo a
formal peer-review process. The posterior means and medians were
similar to the modes (Table SM3). For peer-reviewed studies, the pre-
dicted distribution was similar to the overall study-level distribution
(Figs. 4–5). The study-type model performed well with inclusion of all
141 studies (Table SM4).

3.3. Non-taxonomic mislabeling estimates

Most effort has focused on sampling restaurants and grocery stores.
Fewer studies have tested for seafood mislabeling at wholesale venues,
ports, and markets. Wholesale venues were excluded from our model
because we identified only five studies that have sampled them (Armani
et al., 2015; Burros, 2005; Cawthorn et al., 2012; Kappel and Schröder,
2016; Roman and Bowen, 2000). All supply chain estimates were si-
milar (21–27%) and uncertain (Fig. 6). Using the difference between
two posterior distributions to conduct pairwise contrasts, there is cur-
rently no statistical evidence that overall mislabeling rates differ across
supply chain locations at the global level (Table SM5). In all cases, the
posterior median and mean estimates were similar to the mode (Table
SM3). With the exception of markets, predicted modes were less than
the naive mean. The model performed well with the inclusion of the
four supply chain locations (Table SM4).

With respect to seafood form, filet and processed products have been
sampled the most (n > 50 studies), while whole, sushi, and roe forms have
half as many studies (Fig. 7; Table SM3). Posterior mode estimates were
similar and uncertain across supply chain locations, ranging from 20 to 22%
and with overlapping 95% HDIs (Fig. 7). Using the difference between two
posterior distributions to conduct pairwise contrasts, there is currently no
statistical evidence that overall mislabeling rates differ across product form
at the global level (Table SM5). For all forms, the posterior modes and
medians are similar to the mode, and the naive means are greater than all
posterior estimates (Table SM3). The model performed well with the in-
clusion of the five product forms (Table SM4).

We estimated mislabeling rates for five countries, which had ≥10
studies. Posterior modes and 95% HDIs were similar, with the modes

ranging from 25 to 28% (Fig. 8). Using the difference between two
posterior distributions to conduct pairwise contrasts, there is currently
no statistical evidence that overall mislabeling rates differ across
countries (Table SM5). Posterior means and medians were similar to the
modes (Table SM3). For three of the five countries, the naive mean was
greater than the mode (Fig. 8). Like other non-taxonomic factors, esti-
mates were uncertain, with an average 95% HDI of 17%. The model
performed well with the inclusion of the five countries (Table SM4).

3.4. Taxonomic mislabeling estimates

While five times more studies have sampled fish compared to in-
vertebrates, the predicted posterior modes and distributions are similar,
with invertebrates having a larger 95% HDI (15% vs. 9%; Fig. 9). In
both cases, the posterior means and medians are similar to the modes,
and all are less than the naive means (Fig. 9; Table SM3). The model
performed well (Table SM4).

We estimated mislabeling rates for 23 families, which had ≥10 studies
(Fig. 10). Posterior modes ranged from 3 to 61% and, with a few exceptions,
estimates were uncertain (mean 95% HDI = 25%; Fig. 10; Table SM6).
Twenty (and 9) of the 23 families have posterior modes (and upper 95%
HDIs) less than the study-level mode of 24% (Table SM5). Serranidae (sea
basses: groupers and fairy basslets) and Lutjanide (snappers) have the
highest estimated mislabeling rates. Four families have estimates ≤5%:
Cichlidae (cichlids), Carcharhinidae (requiem sharks), Lophiidae (goose-
fishes), and Xiphiidae (swordfish; Fig. 10). For most families the naive mean
was greater than the posterior mode, and for some cases the posterior
medians and means were also greater than the modes (Fig. 10; Table SM5).
We were unable to estimate mislabeling for any invertebrate families due to
lack of study replication. The model performed well with the inclusion of 23
families; however, for four families the ESS for variance estimates
were < 10,000 (Table SM7).

We estimated mislabeling rates for 28 seafood products, which each
had ≥10 studies (Figs. 11–13). The overall mode for all products was
8% (Fig. 4b). Posterior modes ranged from < 1–74%; many estimates
are uncertain (mean 95% HDI = 26%; Table SM8). Twenty-five (and
16) out of the 28 products have posterior modes (and upper 95% HDIs)
less than the study-level mode of 24% (Figs. 11–13). Nine products
(32%) have posterior mode estimates greater than the overall product
mode of 8% (Figs. 11–13). For many products, the naive means and
posterior means and medians are greater than the posterior modes
(Figs. 11–13; Table SM8). Products with the highest mislabeling rates

10

20

30

Studies

Fig. 2. Distribution of effort to document seafood mislabeling by country. The United States (37), Italy (24), and Spain (18) have the most studies, followed by Brazil
(10) and the countries of the United Kingdom (10).
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are Northern Red Snapper (Lutjanus campechanus), European Hake
(Merluccius merluccius), and fish labeled grouper. Fish with the lowest
mislabeling rates (< 1%) are Deep-water Cape Hake (Merluccius para-
doxus), Striped Catfish (Pangasianodon hypophthalmus), Blue Shark
(Prionace glauca), Pacific Cod (Gadus macrocephalus), and fish labeled
salmon (Table SM7). We were unable to estimate mislabeling for any
invertebrate products due to lack of study replication. The model

performed well with the inclusion of 28 products; however, for seven
products the ESS for variance estimates were < 10,000 (Table SM9).

3.5. Model performance, central tendency estimates, and sampling

With very few exceptions, our Bayesian models performed well,
producing robust central tendency and variance estimates. In only
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eleven cases did estimates have an ESS < 10,000—all of which were
variance estimates for families or products (Tables SM6, SM8). Model
estimates and HDI intervals for the overall and product models did not
change when we varied the priors (See Supplementary materials).

Across all over our models, the naive mean overestimated the pos-
terior mode 87% of the time. It did so, on average, by +9% (minimum
delta = −4%; maximum delta = +35%). In cases were probability
distributions were skewed (i.e., some family and product estimates), the
posterior means and medians were also greater than the posterior
modes (Figs. 10–13; Tables SM6, SM8).

When study-level mislabeling data is segmented by seafood product,
global sampling effort and naive mislabeling rates are dominated by 0%
and 100%. In fact, 73% of the 1,582 product-level rates are 0% or
100%, and the pattern is similar across taxonomic families (Fig. 14).
Only 27% of the naive rates are between 1 and 99%.

Mislabeling Rate
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24

20 29
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8
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Fig. 4. A) Posterior probability density of mislabeling rates
for 141 studies, along with overall probability density. The
horizontal black lines mark the 95% HDI (e.g., 20–29% for
the overall), while the vertical bar and black dots represent
the posterior modes. B) Posterior probability density of mis-
labeling rates for 28 products which have ≥10 studies, along
with the overall probability density. The horizontal black
lines mark the 95% HDI (e.g., 4–15% for the overall), while
the vertical bar represents the posterior modes (e.g., 8% for
the overall). The triangle (▲) represents the overall study-
level naive mean (30%). See Table SM2 for individual study-
level estimates.
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Fig. 5. Posterior probability density of mislabeling rates across study type:
peer-review and no peer-review. Posterior mode (vertical line) and 95% HDI
(horizontal line) are shown. Posterior mode, 95% HDI, and sample size (i.e.,
number of studies) are shown on the right side. Study-level mislabeling data are
also shown with dot size proportional to number of samples. Mislabeling Rate
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Fig. 6. Posterior probability density of mislabeling rates across supply chain
location. Posterior mode (vertical line) and 95% HDI (horizontal line) are
shown, along with the naive mean (▲). Products with an * represent more than
one species. Sample size (N, number of studies), posterior mode, and 95% HDI
are shown on the right side. Study-level mislabeling data are also shown with
dot size proportional to number of samples.
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4. Discussion

4.1. Efforts to document seafood mislabeling

Studies investigating seafood mislabeling have increased sub-
stantially over the past decade. Yet, seafood fraud is not a new phe-
nomena: diners in New York City hotels were serving shark labeled as
swordfish steaks in 1915 (Anonymous, 1915). The ability to detect
seafood fraud, however, has changed dramatically, driven by the de-
velopment of DNA forensics and to a lesser extent other tools (Naaum
and Hanner, 2016; Rasmussen and Morrissey, 2009; Shokralla et al.,
2015). The majority of research has focused on the development and
testing of DNA forensic tools within the field of food science. For ex-
ample, of the 331 peer-reviewed publications we identified related to
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Fig. 7. Posterior probability density of mislabeling rates for product form.
Posterior mode (vertical line) and 95% HDI (horizontal line) are shown, along
with the naive mean (▲). Sample size (N, number of studies), posterior mode,
and 95% HDI are shown on the right side. Study-level mislabeling data are also
shown with dot size proportional to number of samples.
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Fig. 8. Posterior probability density of mislabeling rates for countries with ≥10
studies. Posterior mode (vertical line) and 95% HDI (horizontal line) are shown,
along with the naive mean (▲). Sample size (N, number of studies), posterior
mode, and 95% HDI are shown on the right side. Study-level mislabeling data
are also shown with dot size proportional to number of samples. The colored
circles on the right represent ranking scores based on the comprehensiveness of
traceability regulations for domestic and imported food products from
Charlebois et al., 2014: green = superior and orange = average. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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seafood fraud, 40% were published in five journals: Food Control, Food
Chemistry, Journal of Agricultural and Food Chemistry, Food Research In-
ternational, and European Food Research and Technology. The growing
number of studies has resulted in greater geographic coverage. How-
ever, effort is still strongly skewed toward a few countries: ≥10 studies
have been conducted in only five countries. Few or no studies have
been conducted in countries that are among the top seafood producers,
exporters, or importers, such as China (4 studies), India (1), Indonesia
(2), Japan (0), Norway (3), Peru (0), Russia (1), Thailand (0), and
Vietnam (0; FAO, 2016). Nonetheless, the accumulation of information
on seafood mislabeling over the past decade is impressive. There were
15 studies published prior to 2008 (covering 12 countries and con-
taining 6,151 total samples) compared to an additional 126 studies
published between 2008 and 2017, covering 37 countries and 21,163
total samples. Similarly, evidence suggests that seafood mislabeling has
also increased as a topic in the popular media over the past decade (Van
Holt et al., 2018).

Despite the growing number of studies, there has been few attempts
to characterize the current evidence on seafood mislabeling. The NGO
Oceana reviewed seafood fraud in 2014 and 2016, reporting weighted
mean study mislabeling rates of 22% and 19%, respectively (Golden
and Warner, 2014; Warner et al., 2016). Another 2016 review,

published in the journal Food Control, reported a mean study mislabel
rate of 30% (Pardo et al., 2016). While previous reviews provide a
foundation into synthesizing seafood mislabeling, they are largely
narrative in scope, reporting on commonly mislabeled species and their
substitutes, as well as anecdotal cases of economic and health impacts
(e.g., Naaum et al., 2016). Another study reported a median mislabeling
rate of 13% for marine finfish using a bootstrapping approach (Stawitz
et al., 2017); however, the authors pooled samples across studies not
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taking into account sampling effort. Importantly, all of the previous
reviews rarely report on the uncertainty of mislabeling estimates nor
take into account sampling effort, and none estimate the uncertainty of
product-specific mislabeling estimates.

With respect to characterizing mislabeling, there are two main
challenges with available studies with respect to parameter estimation.
First, studies tend to report the arithmetic mean pooled across studies
or products without any measure of uncertainty (but see Bénard-Capelle
et al., 2015). This may be partially due to the low sample sizes that are
common, especially when grouped by seafood product. Also, the pur-
pose of many mislabeling studies is to test forensic tools as opposed to
estimate mislabeling rates. The mean as a measure of central tendency,
however, is highly sensitive to skewed data, which is common with
mislabeling data with small sample sizes. Further, the simple pooled
mean is unreliable because it lacks an estimate of variance, as well as
the problems associated with simply pooling data across studies
(Bravata and Olkin, 2001). Our results suggest that mislabeling data is
often highly skewed and the uncertainty in central tendency estimates
is significant—suggesting that reporting the naive mean and ignoring
measures of uncertainty will often lead to an inaccurate characteriza-
tion of mislabeling.

Second, mislabeling studies often lack attention to sampling design
(Pardo et al., 2016). Under-sampling and convenience sampling appear
to be common. True product-level mislabeling rates are unlikely to be
commonly 0% and 100%. Yet, these rates dominate product-level naive
estimates (Fig. 14), suggesting under-sampling is widespread. While
some studies claim to sample seafood randomly, we identified a single
study that presented sufficient information to assess its sampling regime
(Wu, 2017). Most give little or no information on how seafood is
sampled, either at the level of venue (e.g., restaurant) or product (i.e.,
how a product and its sample size are selected). Further, some studies
may be sampling products with a goal of seeking out mislabeling
(Cheney, 2018), which is even more problematic with respect to esti-
mating true mislabeling rates. While convenience sampling has its

advantages (e.g., cost effective, expedited data collection), the potential
for unmeasurable bias limits inferences. While larger samples sizes re-
duce the chance of sampling error with convenience sampling, this is
often not the case with mislabeling studies. In general, convenience
sampling reduces power to detect differences among groups, increases
variation that cannot be accounted for, and limits generalizability to the
actual sample studied (Bornstein et al., 2013). Across several dis-
ciplines, researchers have demonstrated that probability sampling can
produce different results and inferences compared to convenience
sampling (Hedt and Pagano, 2011; Hultsch et al., 2002; Özdemir et al.,
2011; Pruchno et al., 2008). The observed uncertainty and inability to
discern differences across factors in the results of our meta-analysis may
be influenced by the convenience sampling conducted by mislabeling
studies. While our Bayesian approach does not correct for any potential
sample selection bias resulting from convenience sampling, it does
produce improved central tendency estimates and their un-
certainty—using all available data. Further, it produces probability
distributions of mislabeling rates independent of assumptions asso-
ciated with frequentist approaches (e.g., chi-square test, 95% con-
fidence intervals; Kruschke and Liddell, 2018), which are likely not met
for many mislabeling studies.

4.2. Study-level mislabeling estimates

The posterior mode of the study-level mislabeling rate differs from
the naive mean: 24% versus 30%. Given the current data, there is a
1.2% probability that global study-level mislabeling rate is 30%. Yet,
the estimated mode is uncertain, with a 95% HDI between 20% and
29%, which overlaps with one previous review that reported a weighted
mean rate (Golden and Warner, 2014). Our hierarchal model, however,
has several advantages in estimating study-level mislabeling rates
compared to using the naive mean or weighted approaches. First, it
estimates the entire probability distribution given the current data,
accounting for different sampling effort across studies. Second, it

Fig. 14. Global sampling effort and naive mislabeling
rates of seafood products. Circles represent the naive
mislabeling rate for products by study (N = 1582 study-
product combinations). Dot size is proportional to
sample size, and colors represent different taxonomic
families. As shown in the histogram, the majority of
sampling effort has a naive mislabeling rate of 0% (57%;
n = 900) and 100% (16%; n = 257). Only 27%
(n = 425) of the data falls between 1 and 99%. Given
that it is unlikely that true mislabeling rates are com-
monly 0 or 100%, under-sampling appears to be
common for mislabeling studies.
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provides informative measures of variability or uncertainty of central
tendency estimates. Third, it improves study-level estimates by in-
dividual studies acting as simultaneous prior information to shrink
extreme cases (Kruschke, 2014). Given the observed variability, both
within and across studies, the observed shrinkage between the naive
and posterior means was minimal at the study-level (Table SM2). Given
the diversity of seafood tested (i.e., 401 and 301 seafood products and
species, respectively) along with other factors, the observed uncertainty
should not be surprising. Yet, this uncertainty has been under-appre-
ciated, and largely ignored, in the literature.

Despite a more robust central tendency estimate (and measure of
uncertainty), study-level estimates are of limited utility for character-
izing seafood mislabeling. They can also be misleading. First, the goal of
many mislabeling studies is not to estimate rates. Second, a mislabeling
study is, on average, a collection of idiosyncratic seafood products
collected at different locations by different motivations and then tested
for authenticity. This is likely an underlying reason for the observed
variability and subsequent uncertainty across studies. It is the under-
lying characteristics of specific seafood products that are likely driving
mislabeling patterns (Donlan and Luque, 2019), which are masked by
study-level mislabeling estimates that often include multiple products,
as well as multiple locations and forms. Third, study-level estimates
have little generalizability beyond characterizing mislabeling studies
themselves. This issue is exacerbated with potential issues associated to
convenience sampling. Yet, study-level estimates often result in mis-
leading statements: such as 30% of seafood is mislabeled — using our
naive mean as an example. Such statements in the media are not un-
common (Begley, 2014; Blank, 2017; Fraser, 2018; Oaklander, 2015;
Sifferlin, 2016). Irrespective of the need to take into account production
with such statements (e.g., apparent consumption; Kroetz et al., 2018),
reporting the study-level naive mean is almost certainly overestimating
mislabeling in many cases, and may be misleading the public even
when qualifications are included (e.g., 30% of the seafood samples tested
were mislabeled), particularly given the current sampling practices and
that uncertainty in estimates is rarely reported. Accurate reporting,
including variability in estimates, is important given that some studies
have been criticized for inflating mislabeling rates and problematic
study design (Cheney, 2018; Sackton, 2014).

4.3. Non-taxonomic mislabeling rates

Teasing apart where mislabeling occurs along the supply chain and
if differences exist is a challenging endeavor. Many studies focus on
multiple retail venues and do not report on the locations of individual
samples. The majority of available effort has focused on restaurants and
grocery stores. While some have claimed wholesale distributors have
the highest probability mislabeled seafood (Stawitz et al., 2017), in-
sufficient and variable data preclude useful estimations, let alone any
statistical comparison (also see Donlan et al., 2017). Some researchers
have suggested that mislabeling is more prevalent at retail outlets
compared to locations more upstream in the supply chain, while other
have suggested rates are higher in restaurants compared to other re-
tailers (e.g., grocery stores; Khaksar et al., 2015b; Muñoz-Colmenero
et al., 2016; Stawitz et al., 2017). Results from available data provide
no evidence for differences in mislabeling rates along the supply
chain—at least at the global level where there is sufficient data to
conduct a valid comparison (Fig. SM5). More effort and attention to
sampling is needed across the seafood supply chain in order to reduce
the observed uncertainty and improve estimates. Further, incentives
and opportunities to mislabel products at certain supply chain locations
(e.g., port versus restaurant) are likely to differ depending on the pro-
duct (e.g., Atlantic Bluefin Tuna versus Pacific salmon), suggesting that
multi-species, study-level analyses could mask important patterns
(Cline, 2012; Gordoa et al., 2017). Where mislabeling is occurring is an
important unanswered question, and it is likely influencing any po-
tential natural system impacts of seafood fraud. Products that are

mislabeled at sea or port-of-entry are more likely to manifest into po-
pulation-level impacts of substitute species, particularly if it is poorly
managed, for a variety of potential reasons (e.g., over-quota harvesting,
under-size harvesting, and under-reporting catch). High-effort studies
that focus on specific products in specific countries across the entire
supply chain should be a priority and could reveal important insights
into seafood fraud.

Like supply chain location, current evidence suggests there are no
differences in mislabeling estimates with respect to form, at least
globally and when pooled across all seafood products. Estimates and
their uncertainty are similar, and all forms are likely overestimated
with the naive mean. Studies focused on sushi have varied widely, with
mode mislabeling rates ranging from 3 to 90% (Armani et al., 2017;
Fuller, 2007; Khaksar et al., 2015b; Lowenstein et al., 2009; Stern et al.,
2017; Vandamme et al., 2016; Willette et al., 2017). Some researchers
have observed and hypothesized that processed products (e.g., smoked,
canned) are mislabeled more frequently than other forms, while others
have observed no differences (Bréchon et al., 2016; Carvalho et al.,
2017b; Miller and Mariani, 2010; Muñoz-Colmenero et al., 2016). We
hypothesize the difference across product forms may exist, but are
being masked due to multiple seafood products, along with high levels
of under-sampling. Greater effort using probabilistic sampling and
targeting specific products could reveal such differences.

There is currently little evidence that overall mislabeling rates differ
by country. Additional sampling might prove otherwise, which could
reduce the uncertainty of estimates. Further, additional sampling tar-
geting products of interest (e.g., products with high consumption or
mislabeling rates) could reveal important insights. Mislabeling esti-
mates for countries with progressive traceability regulations (i.e., su-
perior; Italy and United Kingdom) do not differ from the United States
and Brazil, whose regulations are considered average, at least when
viewed across all studies and products (Charlebois et al., 2014). Some
have claimed that progressive seafood regulations, along with media
and outreach, are contributing to a reduction in seafood mislabeling in
European Union (EU) countries (Mariani et al., 2015; Warner et al.,
2016). These claims, however, were made without any statistical ana-
lysis and lack any measures of uncertainty. In contrast, some policy
analysis have concluded that EU seafood controls are non-effective due
to flaws in policy design, such as a decentralized catch verification
system and the lack of unique identifiers for products at the lot level
(Borit and Santos, 2015; Hosch, 2016). When we estimate annual
mislabeling rates for the European Union (2006–2015), there is not any
statistical evidence of a decline after 2010—when the new EU regula-
tions were implemented (Fig. SM7). The impact of seafood labeling and
traceability regulations on mislabeling remains unknown. Similar to
how many governmental import inspection programs (e.g., US Com-
pliance Measurement Program) are insufficient in effort to undercover
many types of seafood fraud (GAO, 2009), any effort to properly
measure regulatory impacts on mislabeling through time and space will
require in-depth, targeted, and high-effort investigations.

4.4. Taxonomic mislabeling estimates

Family-level estimates provide some insights into characterizing
seafood mislabeling. The seabass and snapper families have relative
high and uncertain mislabeling rates, which is driven by the mislabeling
of groupers and snappers, respectively. While documented mislabeling
for both families is most frequent in the United States, it occurs across
seven countries—suggesting that these two families are vulnerable to
mislabeling globally (Armani et al., 2016; Asensio et al., 2008; Carvalho
et al., 2017a; Cawthorn et al., 2015; Cox et al., 2013; Cutarelli et al.,
2014; Di Pinto et al., 2015; European Comission, 2015; FDA, 2013;
Filonzi et al., 2010; Guardone et al., 2017; Nagalakshmi et al., 2016;
Nolhgran and Tomalin, 2006; Staffen et al., 2017; Vandamme et al.,
2016; von der Heyden et al., 2010; Warner et al., 2013; Wong and
Hanner, 2008). Other families have relatively low mislabeling rates
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(e.g., < 10%). Some of these families include products that are often
substitute species, and thus, the low rates are not surprising, such as
lower-valued aquaculture species like Tilapia (Cichlids) and Striped
Catfish (Shark Catfish). Yet, other families with low mislabeling rates
include higher-value products that are commonly sampled for mis-
labeling, such as the swordfish and dolphinfishes families. Family-level
estimates, however, do have limitations with respect to characterizing
seafood mislabeling because product-level patterns can be masked. The
salmonid (Salmonidae) family, for example, has a relatively low mis-
labeling rate (8%); however, Pacific salmon species (Oncorhynchus spp.)
are mislabeled at a higher rate, while aquaculture salmonid products
are often substitutes (i.e., Atlantic Salmon and Rainbow Trout).

Product mislabeling estimates, and their uncertainty, are the most
useful for characterizing seafood fraud. Our results suggest that many
seafood products have relatively lower global mislabeling rates than
commonly reported, much lower than the study-level mode (24%) and
often much lower than the naive mean. More than half of the 28 pro-
ducts have estimates of ≤5%. This includes products that are common
substitute species (e.g., Atlantic Salmon and Alaska Pollock), but also
includes species that are considered priorities within mislabeling po-
licies, such as Swordfish under the U.S. Seafood Import Monitoring
Program (Department of Commerce, 2016). Products with relatively
low mislabeling estimates are as informative as products with high rates
with respect to informing policies and programs to reduce seafood
fraud. For example, traceability systems come at a cost to governments
and producers, and can pose a significant burden to small producers
(Kher et al., 2010). For products with low mislabeling rates (and un-
certainty), the costs of implementing a traceability program may out-
weigh the potential benefits, especially given the limited resources
available for enforcement (Friedman, 2017; Wagner, 2015). Im-
portantly, mislabeling rates must be viewed through the lens of pro-
duction in order to gauge their importance and potential socio-ecolo-
gical impacts (Kroetz et al., 2018). For example, a product with
relatively low mislabeling rate but high production could be pre-
cipitating greater impacts compared to a species with a higher mis-
labeling rate, but low production.

Products with relatively high mislabeling rates provide insights into
seafood fraud, particularly when coupled with additional data
(Table 1). Northern Red Snapper was one of the first products for which
mislabeling was documented, and subsequently has been relatively
well-studied (Cawthorn and Mariani, 2017; Cawthorn et al., 2018;
Grogran, 1988, 1989). It is commonly mislabeled by other snapper
species belonging to the same family, followed by farmed Tilapia (Or-
eochromis spp). Mislabeling has been documented largely within the
United States (but see Cawthorn et al., 2018). For this species, un-
covering specific patterns of mislabeling is particularly challenging
because trade data and labeling policies lack sufficient taxonomic
granularity (Cawthorn and Mariani, 2017; Cawthorn et al., 2018). Si-
milarly, Common Sole is most commonly mislabeled by other species of
sole (e.g., Sengealese and Lemon Sole) and farmed Striped Catfish.

Evidence for Common Sole mislabeling is restricted to the European
Union, as is European Hake, which is most commonly mislabeled by
other wild-caught species of hakes (e.g., Argentine Hake, Deep-water
Cape Hake). While the Albacore mislabeling rate is less than the above-
mentioned species, its global production is greater—raising the point
that the amount of mislabeled seafood consumed is influenced by
production (Kroetz et al., 2018). This point is particularly illustrated
with Atlantic Cod (Table 1). Our estimated mislabeling rates for specific
seafood products can allow for the construction of mislabeling profiles
by combining them with other types of data, which is likely necessary
to uncover product-specific patterns of mislabeling that are needed to
explore the incentives, causes, and consequences of seafood mis-
labeling, which are likely to differ drastically by product (Donlan and
Luque, 2019). These characteristics in combination (e.g., productions,
substitutes, geographic scope) will be necessary to design targeted and
cost-effective solutions to reduce mislabeling.

Our analysis revealed important seafood products where data is
severely lacking with respect to mislabeling. For example, only nine
studies have sampled the shrimp family (Penaeidae). Yet, global shrimp
production in 2016 was 8.6 million tonnes (FAO, 2018). This includes a
single sample from a single study from the United States, where shrimp
is one the most consumed seafood products (Khaksar et al., 2015a;
NMFS, 2016).4 In fact, we were unable to estimate mislabeling rates for
any invertebrates species. Yet, mislabeling for high-value invertebrate
species has been documented, such as various species of lobster, squid,
octopus, abalone, cuttlefish, shrimp, and crab (Aranceta-Garza et al.,
2011; Armani et al., 2015; Cawthorn and Hoffman, 2017b; Guardone
et al., 2017; Nicole et al., 2012; Warner et al., 2014; Warner et al.,
2015). While the overall mislabeling rate for invertebrates appears si-
milar to fish, data is currently insufficient to produce useful estimate
global rates for specific invertebrate seafood products.

4.5. Conclusions and recommendations

Given the global nature of seafood markets and supply chains, the
results of our global meta-analysis provide a first step into the char-
acterization of mislabeling. Important geographic and taxonomic gaps
exist in terms of characterizing seafood fraud. Study-level rates and
naive means are sometimes overestimating the true extent of seafood
mislabeling and are likely masking important product-level information
and patterns. For most products for which there is sufficient data,
mislabeling rates are below the global study-level estimate of 24%, with
the majority much lower. When including only products that have been
sampled sufficiently, the global mislabeling rate is 8% (95% HDI:
4–14%), which is a more appropriate estimate given the current data

Table 1
Characteristics of expected species that have relatively high global mislabeling rates. The posterior mode mislabeling rate is shown, along with the dominant
substitutes, global production (2016 in thousands of tonnes; FAO, 2016), and the main geographies where mislabeling has been documented according the compiled
database. Pacific salmon production includes Chinook, Chum, Coho, Sockeye, and Pacific salmons (nei).

Expected species Mislabeling rate Dominant substitutes Global production Geographic scope of
mislabeling

Northern Red Snapper (Lutjanus
campechanus)

74% Other Lutjanidae snappers; Aquaculture species N/A USA

European hake (Merluccius merluccius) 40% Other Merluccid hakes 142 EU
Common Sole (Solea solea) 20% Other soles (Soleidae) species, Aquaculture species 32 EU
Albacore (Thunnus alalunga) 17% Other Scombridae tunas 208 EU, USA, ZAF
Pacific salmon (Oncorhynchus spp.) 17% Aquaculture Salmonidae species (Atlantic Salmon,

Rainbow Trout)
655 CAN, USA

Atlantic Cod (Gadus morhua) 11% Other Gadidae species (Haddock, Pacific Cod, Saithe,
Alaska Pollock)

1329 BRA, CAN, EU, USA

4 An unpublished report also sampled shrimp (n = 143 samples) in the United
States (Warner et al., 2014). While mislabeling was documented, we were
unable to extract the information needed to include it in our meta-analysis.
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and the presence of widespread under sampling. Importantly, several
products have higher mislabeling rates and should be priorities for re-
search and interventions.

The majority of mislabeling studies have under-sampled seafood
products and have not sampled probabilistically. Both issues are un-
derstandable given the goal of many mislabeling studies is to develop
and test forensic tools. Yet, these issues present challenges with respect
to producing useful estimates of mislabeling rates, which are needed to
understand seafood fraud. Research that targets certain products and
supply chain locations with high-levels of effort are likely to produce
the most useful information (e.g., Bréchon et al., 2016; Gordoa et al.,
2017). While useful as a rapid assessment, studies with low-effort
sampling regime across many species are of little utility with respect to
estimating true rates (e.g., five samples of ten different products).
Targeted mislabeling research with more attention to sampling design
will improve our understanding of seafood fraud. But, in order to begin
to document its causes and consequences, mislabeling data must be
combined with other data in order to provide a systems perspective. We
suggest a number of broad research recommendations that will help
improve mislabeling estimates, which are a challenging, but critical
factor, in informing programs and policies to reduce seafood fraud (Box
1).

There has been little theoretical or empirical work on the potential
impacts of seafood mislabeling (however, see Ugochukwu et al., 2015).
A variety of impacts are possible, including socio-economic, human
health, and natural system impacts (Cohen et al., 2009; Doukakis et al.,
2012b; Gordoa et al., 2017; Lowenstein et al., 2010; Naaum et al., 2016;
Palmeira et al., 2013). Yet, evidence for impacts are largely anecdotal,
and the scale and scope of different types of impacts remain unknown.
Estimating natural system impacts will require integrating mislabeling
and substitution rates with fisheries management and production data.
It is the substitute species, not the expected species, that is likely to be
important in most cases. For example, it is the substitutes that are re-
sponsible for any potential human health impacts or could be suffering
from over-harvesting, in the case of capture fisheries, driven by the
opportunity to mislabel. Some common substitutes are aquaculture
products, such as Striped Catfish, Atlantic Salmon, and Tilapia. While
some impacts from aquaculture are well documented and have been
shown to be geographically variable (Burridge et al., 2010; Ford and
Myers, 2008), the net environmental impact of aquaculture substitutes
in seafood fraud is unknown. In cases where a lesser-value product is
labeled as a higher-value one, market and consumer impacts are pos-
sible (Cline, 2012; Doukakis et al., 2012a; Gordoa et al., 2017). But,
other incentives and drivers of mislabeling are likely playing equally
important roles (market access; accidental; regulation avoidance;
Donlan and Luque, 2019). The prevalence of these multiple incentives
and drivers remain unknown. Global mislabeling estimates (and their
uncertainty) of taxonomic and non-taxonomic factors provide a

foundation for prioritizing more research to inform programs and po-
licies to reduce seafood fraud.
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